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Abstract. Starting from the supergauge invariance suggested by physical requirements, we 
set up the corresponding Noether identities and determine the most general Lagrangian 
which satisfies them. 

1. Introduction 

When a physical system is described by a Lagrangian with a certain number of gauge 
symmetries, then not all the dynamical coordinates are independent, since there exists 
exactly the same number of identities among the equations of motion. This is the 
content of the well known second Noether’s theorem (Noether 1918), which applies 
both in the infinite-dimensional case (e.g. gauge field theories) as well as in the 
finite-dimensional one (e.g. constrained dynamics). The inverse problem arising from 
Noether’s theorem can be formulated as the determination of the most general 
Lagrangian presenting a given number of gauge invariances (Sorace 1977, Gomis et 
a1 1983). Although the solution of the inverse problem is considerably more difficult, 
this is, however, the most common phenomenological situation to be faced when 
looking for the description of a dynamical system whose gauge symmetries are suggested 
by physical requirements. 

The purpose of this paper is to show how the inverse problem can be solved in 
the case of a finite-dimensional graded system invariant under reparametrisations of 
world lines and supergauge transformations, thus determining the most general 
Lagrangian admitting such invariances. 

In order to give an account of the procedure to be followed, we briefly sketch the 
case of a single pointlike scalar particle, whose action is assumed to be invariant under 
the transformation of the evolution parameter 

where cp is a monotonic increasing function and equal to identity on the boundary of 
the 7-interval in which the evolution is considered, but otherwise arbitrary. If we 
assume a Lagrangian function only dependent on the particle position x p  and its 
velocity xp = dxp/d.r, then the invariance under (1.1) immediately implies that the 
Lagrangian L(x ,  x) has to be a homogeneous function of the first degree in x. 

An alternative description can be given in terms of a Lagrangian involving, in 
addition to x and 1, an ‘einbein’ e and its 7-derivative e. We thus obtain a formalism 
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which is valid also for massless particles and has an interesting interpretation in terms 
of one-dimensional gravity (Brink er a1 1976,1977). The invariance of the action under 
(1 .1)  now implies the invariance of the Lagrangian L = L(x ,  x, e, e )  under the local 
variations 

$xw = [ 7 - cp ( .)lap, $e =(d/dr)[(r-cp(r))e] (1.2) 

Denoting by S / S q  = a/aq - (d /dr )  3/89 the Euler-Lagrange operator, the Noether 
theorem yields the identity 

As (1.3) is an identity, the coefficients of the accelerations must separately 
We thus get the equations 

a2L a2L 
a x p a e  a i 2  
--_- - - 0  

whose general solution, L = F ( x ,  e)P + G ( x ,  1, e ) ,  can also be written in the form 
L = H ( x ,  x, e )  +(d/dr)K(x,  e ) .  Neglecting the total derivative and substituting L = H 
into (1.3), we see that 

aL aL xw - + e -  = L. 
a x w  ae (1.5) 

Therefore L is a homogeneous function of the first degree in x and e, a result 
independent of any other requirement of invariance that the system could satisfy. If, 
in particular, we look for a PoincarC scalar Lagrangian, we get 

L = @ h (  a’/ e’) + eg(x2 /  e’). (1.6) 
- 

The choice h ( z )  = IJz, g(z) = fm’ reproduces a known result, already present in 
the literature (Brink er a1 1977). 

In 3 2 we introduce the invariance under supergauge transformations required for 
the description of a relativistic spinning particle, we set up the corresponding Noether 
identities and we determine the most general Lagrangian which satisfies them. 

In 3 3 we show how the previous results can be brought to bear on the problem of 
finding the general Lagrangian function for some two-particle systems, considering 
the consequences of assuming the invariance under independent reparametrisations 
of the particle world lines. 

2. General Lagrangian for a relativistic spinning particle 

In the framework of supergravity in one dimension, to describe a relativistic spinning 
particle we introduce, besides the usual coordinates xw, a set of Grassmann variables 
&p,  t5 connected to the spin, an ‘einbein’ e and an auxiliary odd variable 4. The action 
of the particle is required to be invariant under the transformations (Brink er a1 1977, 
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Galvao and Teitelboim 1980, Sundermeyer 1982) 

87 = cp( 7) - 7 E - U (  7)  

S;C” = a(7)x”  + i a ( T ) ( ”  

s e =  (d/dT)(a(T)e) + i a ( T ) $  

Etp = a ( 7 ) i ”  + ( a ( 7 ) / 2 e ) ( 2 i p  -i+t”) 

&, = a ( 7 ) i 5 -  m a ( 7 )  

8+ = ( d / d ~ ) ( a ( 7 ) + + 2 a ( ~ ) )  

where a (  7) is the usual even gauge parameter associated with the reparametrisation, 
while CY (7 )  is an odd gauge parameter related to supergauge transformations. 

According to the second Noether theorem, we now have the two identities 

(2.2) 

whose general solution is to be investigated. The same procedure used in (1.3), when 
applied to (2.2), shows that the dependence of the Lagrangian on the variables e and 
4 can be absorbed in a total derivative, so that e and 4 can be neglected. Moreover, 
as we want to consider a PoincarC invariant system, we shall also drop the dependence 
on x so that L =  L ( i ,  e, 5, 8, &, is, 4) .  

As in 9 1, (see ( 1 . 3 ) ) ,  the Noether identity ( 2 . 2 )  simply implies that L is a 
homogeneous function of the first degree in the variables (x, e, i, is, +), while a greater 
care is needed to find the consequences of the identity (2.3), related to supergauge 
transformations. 

Again, as ( 2 . 3 )  must identically hold, the coefficients of the accelerations have to 
vanish separately. After some lengthy algebra, we see that ( 2 . 3 )  gives the conditions 

where T is the differential operator 

a 1  a a a 
a i ”  2e  at+ at5 a* 

T =  it”-+- (2x” - i+5”) -- m - + 2 - - .  

We now recast (2.4) in a form more suited for calculations, namely 

(2.5) 
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The first two equations say that TL is independent of 4” and 4,. The third one 
shows that TL can depend on x p  only through the combination 

(2.8) z ’ l=  x ‘ P  -$$(”. 

The fourth equation establishes that TL is homogeneous of zero degree in (ap, 4, e)  
so that TL = F ( z p ,  tp, t5, e), F being any homogeneous function of zero degree in z 
and e. Recalling that TL is an odd PoincarC invariant quantity, we can write 

where the prime denotes differentiation with respect to the argument. Using (2.9) and 
the last of equations (2.7), after some straightforward integrations and expanding the 
result on the Grassmann algebra of the odd variables, we get 

= LO + L l  !$5‘!5 + L 2 6 5 $  + L3!$5(x * 5) + L4454  + L 5 i 5 ( x  * 5) 

(2.10) 

where J g are defined in (2.9) and L, = Li(x,  e), i =0-7.  To obtain a consistent 
expression we apply the operator (2.6) to the Lagrangian (2.10) and compare the result 
with (2.9). Using also the equation (2.5) we finally get the following set of conditions 

m m  
x2 
e 

Lo= -im2be-i-g-ic, 

L 3 =  L4= L 5 =  L,=O, 

b and c being arbitrary constants. 
We have thus found the general Lagrangian 

x2 
e 

L = -im2be - i  - g + b&i5 + mb,$,$ 

(2.1 1) 

(2.12) 

Notice that for b = f i  and g = constant = f i  we get the Lagrangian given in (Brink 
et a1 1977). Eliminating the einbein e we also recover the Lagrangian studied in Galvao 
and Teitelboim (1980). 

3. Lagrangian functions for systems with two independent reparametrisations 

Let us consider a system composed of two relativistic spinning particles described by 
the set of variables (xg, eo, ti, 4,) ( q t ) ,  a = 1, 2, where p and J respectively denote 
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the indices of the even and odd coordinates, (e,, $,) are the evenlodd einbeins 
eventually necessary to describe the theory and finally the notation q t  is used whenever 
no distinction of the evenlodd coordinates is needed. We shall use the convention of 
summing over the repeated p, J and A indices but not on the particle index a. 

If we require that the action of the system is invariant under independent reparametri- 
sations of each world line, then the two particles are necessarily non-interacting. This 
result has been proved (Giachetti and Sorace 1979, Barducci et a1 1984) using the 
integrability condition for vector fields on graded manifolds (Giachetti and Ricci 1984). 
We shall produce here a slightly different and simpler proof directly in terms of the 
dynamical coordinates. 

The invariance under independent reparametrisations gives rise to the Noether 
identities 

SL SL d SL d SL x: - + 5 . 7 -  e - -- +, - - = 0 
Sx: S t ,  , d r  Se, d r  S$. 

a = 1 , 2  

or, equivalently, 

Since 

(3.1) 

equations (3.2) can be written in the form 

where &ab denotes the skew-symmetric tensor in two dimensions. Equation (3.4) can 
be regarded as the statement that the two differential forms 

are exact. The condition dw, = 0 gives then 

a2 L a2L a2 L a2L 
(3.6) ~ - - -  

B----- ad? aqf - ad? aq2 as? aqf - as? aqf - O 

which prove that L splits into the sum of two terms L , ( q f ,  q?) and L 2 ( q t ,  4 ; ) .  
We conclude by observing that any other property we may require must be directly 

searched for in the sub-Lagrangians L ,  and L2. In pafiicular all the results of the 
previous sections apply. 
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